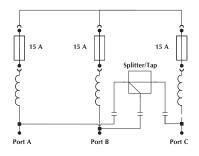
power splitter - PS3-F1300 - fixed

Product Information

The introduction of DKT PS3-F1300 is our most recent addition to the highly successful series of DKT's power splitters serving networks all over Europe. The frequency range has now been enhanced to meet Docsis 3.1 requirements.


With the DKT PS3-F1300 we have focused on designing the most compact and flexible 2-way splitter/directional coupler on the market fitting applications in Europe using street cabinets and underground cables. The compact size makes installation in even small street cabinets possible.

The electrical performance is in comliance with CENELEC's highest standards just as in the case with the other DKT products.

PS3-F1300 - fixed is produced to below specifications and as shown in the diagram to the right.

All Power Splitter models have spring-loaded terminals mounted on the PCB. So the PG11 adapter can be installed without dismounting the power splitter lid.

3-port Power Splitter

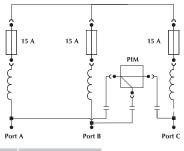
Туре	Frequency Range	PS3-F1300-02	PS3-F1300-1-7	PS3-F1300-1-11	PS3-F1300-1-16		
Description		2-way splitter	1-way tap 7dB	1-way tap 11dB	1-way tap 16dB		
Item no.		40621	40622	40623	40624		
	5 - 470 MHz	4.0 ± 0.7	3.0 ± 0.7	1.6 ± 0.6	1.1 ± 0.6		
Insertion Loss (IN-OUT) (dB)	470 - 1006 MHz	4.1 ± 0.8	3.3 ± 0.8	1.7 ± 0.8	1.2 ± 0.7		
	1006 - 1300 MHz	4.7 ± 1.0	4.3 ± 1.0	2.9 ± 0.9	2.1 ± 0.8		
Tap Loss (IN-TAP) (dB)	5 - 1300 MHz	-	7.8 ± 1.3	10.5 ± 1.0	16.5 ± 1.0		
	5 - 10 MHz	≥ 20	≥ 21	≥ 23	≥ 25		
Indeting (OUT TAD) (JD)	10 - 470 MHz	≥ 25	≥ 22	≥ 23	≥ 24		
Isolation (OUT-TAP) (dB)	470 - 1006 MHz	≥ 21	≥ 20	≥ 21	≥ 23		
	1006 - 1300 MHz	≥ 20	≥ 20	≥ 20	≥ 22		
Detume Lass (JD)	5 - 10 MHz	≥ 16					
Return Loss (dB)	10 - 1300 MHz	Grade 21					
Housing		Aluminium with anti corrosive painting					
Connectors		PG11 female - optional 5/8" - spring loaded clamp					
Power Passing		Max. 10A					
Hum Modulation (64V, 6A)		< - 70 dB					
	7 - 10 MHz	0 MHz < 12 ns					
Group Delay (Δf 2 MHz) 10 - 25 Mł		< 3 ns					
	25 - 1300 MHz	< 1.5 ns					
Screening Effectiveness		Class A ²					
Operating Temperature		-20 to +60 °C					
Dimensions (mm)		150 x 90 x 55					
Weight (kg)		0.5					
¹ Return Loss: EN60728-4 Grade 2 10-47 MHz ≥ 18 dB 47-1300 MHz min. 18 dB ÷ 1.5/oct. ² Screening Effectiveness: EN60728-2 Class A 5-300 MHz ≥ 85 dB, 300-470 MHz ≥ 80 dB							

5-300 MHz ≥ 85 dB, 300-470 MHz ≥ 80 dB 470-950 MHz ≥ 75 dB, 950-1300 MHz ≥ 65 dB

power splitter - PS3-F1300 - flexible

Product Information

The introduction of DKT PS3-F1300 is our most recent addition to the highly successful series of DKT's power splitters serving networks all over Europe. The frequency range has now been enhanced to meet Docsis 3.1 requirements.


With the DKT PS3-F1300 we have focused on designing the most compact unit with a flexible choice for the specific network setup and to save inventory costs. Additionally, it can be used as a platform for power insertion through placement of bridge plug-in modules. The compact size makes installation in even small street cabinets possible.

The electrical performance is in comliance with CENELEC's highest standards just as in the case with the other DKT products.

PS3-F1300 - flexible is produced to below specifications and as shown in the diagram to the right.

All Power Splitter models have spring-loaded terminals mounted on the PCB. So the PG11 adapter can be installed without dismounting the power splitter lid.

Туре	Plug-in modules	ltem no.	Port A	Port B	Port C	
Bridge (dB)	PIM 0A 1G3	40530	In	0.7 ± 0.5	AC in	
	PIM 0B 1G3	40531	In	AC in	0.7 ± 0.5	
	PIM 0C 1G3	40532	AC in	In	0.7 ± 0.5	
Splitter (dB)	PIM 4 1G3	40533	In	4.0 ± 1.5	4.0 ± 1.5	
	PIM 1-7 1G3	40534	In	7.5 ± 1.5	2.9 ± 1.0	
	PIM 1-10 1G3	40535	In	10.5 ± 1.5	2.3 ± 1.0	
	PIM 1-13 1G3	40536	In	13.2 ± 1.5	1.8 ± 1.0	
Tap (dB)	PIM 1-16 1G3	40537	In	16.5 ± 1.5	1.3 ± 1.0	
	PIM 1-19 1G3	40538	In	19.1 ± 1.5	1.3 ± 0.8	
	PIM 1-22 1G3	40539	In	22.0 ± 1.5	1.3 ± 0.8	
	PIM 1-26 1G3	40544	In	26.0 ± 1.5	1.3 ± 0.8	
Frequency range (MHz)	5-1300					
Return loss (dB)	5 - 10 MHz ≥ 16					
Recult (OSS (dD)	10 - 1300 MHz			Grade 2 ¹		
Connectors	PG11 thread - optional 5/8" - optional 5/8"					
Power pass	Max. 10 A					
Hum modulation (64 V, 6 A)	< - 70 dB					
Screening effectiveness	Class A ²					
Dimensions (mm)	150 x 90 x 55					
Weight (Kg)	0.5					

 1 Return Loss: EN60728-4 Grade 2 10-47 MHz ≥ 18 dB 47-1300 MHz min. 18 dB ÷ 1.5/oct. 2 Screening Effectiveness: EN60728-2 Class A 5-300 MHz ≥ 85 dB, 300-470 MHz ≥ 80 dB 470-950 MHz ≥ 75 dB, 950-1300 MHz ≥ 65 dB

DKTCOMEGA

power splitter - PS5-F1300-fixed

Product Information

The introduction of DKT PS5-F1300 is our most recent addition to the highly successful series of DKT's power splitters serving networks all over Europe. The frequency range has now been enhanced to meet Docsis 3.1 requirements.

Port E Out

With the DKT PS5-F1300 we have focused on designing the most compact and flexible 2-way splitter/directional coupler on the market fitting applications in Europe using street cabinets and underground cables. The compact size makes installation in even small street cabinets possible.

The electrical performance is in comliance with CENELEC's highest standards just as in the case with the other DKT products.

PS5-F1300 - fixed is produced to below specifications and as shown in the diagram to the right.

All Power Splitter models have spring-loaded terminals mounted on the PCB. So the PG11 adapter can be installed without dismounting the power splitter lid.

Туре	Frequency Range	PS5-F1300-03	PS5-F1300-03A	PS5-F1300-04	PS5-1300-2-12		
Description		3-way splitter	3-way splitter asym.	4-way splitter	2-way tap 12dB		
Item no.		40630	40631	40632	40633		
	5 - 470 MHz	6.0 ± 0.7	4.2 ± 0.7 / 7.3 ± 0.7	7.5 ± 0.7	2.1 ± 0.6		
Insertion Loss (IN-OUT) (dB)	470 - 1000 MHz	6.3 ± 1.0	4.2 ± 1.0 / 7.7 ± 1.0	7.8 ± 1.0	2.3 ± 0.7		
	1000 - 1300 Mhz	7.2 ± 1.0	4.5 ± 1.0 / 8.5 ± 1.0	8.7 ± 1.0	3.0 ± 0.8		
Tap Loss (IN-TAP) (dB)	5 - 1300 MHz	-		-	12.4 ± 1.0		
	5 - 10 MHz	≥ 20	≥ 22	≥ 22	≥ 20 / 27		
	10 - 470 MHz	≥ 25	≥ 22	≥ 25	≥ 25 / 32		
Isolation (OUT-OUT) (dB)	470 - 1000 MHz	≥ 21	≥ 21	≥ 21	≥ 21 / 25		
	1000 - 1300 MHz	≥ 20	≥ 20	≥ 20	≥ 20 / 22		
	5 - 10 MHz		≥ 1	6			
Return Loss (dB)	10 - 1300 MHz		Grad	e 21			
Housing			Aluminium with anti	corrosive painting			
Connectors		P	G11 female - optional 5/	8"- spring loaded cl	amp		
Power Passing			Max.	10A			
Hum Modulation (64V, 6A)			< - 70) dB			
	7 - 10 MHz		< 12	ns			
Group Delay (∆f 2 MHz)	10 - 25 MHz	< 3 ns					
	25 - 1300 MHz	< 1.5 ns					
Screening Effectiveness		Class A ²					
Operating Temperature		-20 to +60 °C					
Dimensions (mm)		209 x 96 x 56					
Weight (kg)		0.7					
Return Loss: EN60728-4 Grade 2 10-47 MHz ≥ 18 dB 47-1300 MHz min. 18 dB \div 1.5/oct. and min. 14dB 2 Screening Effectiveness: EN60728-2 Class A 5-300 MHz ≥ 85 dB, 300-470 MHz ≥ 80 dB 470-950 MHz ≥ 75 dB, 950-1300 MHz ≥ 65 dB							
15 A	TISA T	TISA TISA TISA TISA TISA TISA TISA TISA	Port C Port D Port E Ver	vsit vsit vsit vsit vsit vsit vsit vsit	Port B Port B Port C Port C Port D Port C Port C Port D Port C Port D Port C		

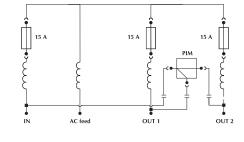
5-Port Power Splitter

confree - two-way splitter with trunk or ac feed

Product information

The introduction of DKT ACP3 P1 F1300 is our most recent addition to the highly successful series of DKT's power splitters serving networks all over Europe. The frequency range has now been enhanced to meet Docsis 3.1 requirements.

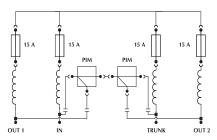
With the DKT ACP3 P1 F1300 we have focused on designing the most compact unit with a flexible choice for the specific network setup and to save inventory costs. Additionally, it can be used as a platform for power insertion through placement of bridge plug-in modules. The compact size makes installation in even small street cabinets possible.


The electrical performance is in comliance with CENELEC's highest standards

just as in the case with the other DKT products.

ACP3 P1 F1300 Item no. 41651

Frequency range 5-1300 MHz


requency range	5 1500 Mi	12		
PIM type	ltem no	Unit	Out 1	Out 2
PIM 0A 1G3	40530	(dB)	0.6 ± 1.0	-
PIM 0B 1G3	40531	(dB)		0.6 ± 1.0
PIM 4 1G3	40533	(dB)	4.7 ± 1.0	4.7 ± 1.0
PIM 1-7 1G3	40534	(dB)	7.9 ± 1.5	2.9 ± 1.0
PIM 1-10 1G3	40535	(dB)	10.9 ± 1.5	2.4 ± 1.0
PIM 1-13 1G3	40536	(dB)	13.4 ± 1.5	1.7 ± 1.0
PIM 1-16 1G3	40537	(dB)	15.9 ± 1.5	1.4 ± 1.0
PIM 1-19 1G3	40538	(dB)	18.9 ± 1.5	1.3 ± 1.0
PIM 1-22 1G3	40539	(dB)	22.0 ± 1.5	1.3 ± 1.0
PIM 1-26 1G3	40544	(dB)	26.0 ± 1.5	1.3 ± 1.0
Frequency range (MHz)		5-1218		
Deturna la sa			5 - 10 MHz	≥ 16
Return loss		(dB)	10 - 1300 MHz	Grade 21
Connector			PG11 thread - optional	5/8" or cable shells
Power pass			Max 1	0 A
Screening effectiveness		Class A ²		
Hum modulation (64 V, 6 A)		< - 70 dB		
Dimensions		(mm)	154 x 10	7 x 55
Weight		(kg)	0.8	}

 $470-950 \text{ MHz} \ge 75 \text{ dB}, 950-1300 \text{ MHz} \ge 65 \text{ dB}$

ACP4 P2 Item no. 41604 Frequency range 5-1000 MHz

PIM type	ltem no	Unit	Out 1	Out 2	Trunk output
Frequency range		(MHz)		5-1006	
PIM 4 + PIM 4	40533/40533	(dB)	4 ± 1.0	8 ± 1.0	8 ± 0.5
PIM 1-7 + PIM 4	40534/40533	(dB)	7.5 ± 1.0	6.5 ± 1.0	6.5 ± 0.5
PIM 1-10 + PIM 1-7	40535/40534	(dB)	11 ± 1.0	9 ± 1.0	4 ± 0.5
PIM 1-13 + PIM 1-13	40536/40536	(dB)	13.5 ± 1.0	14.5 ± 1.0	3 ± 0.5
PIM 1-16 + PIM 1-16	40537/40537	(dB)	16 ± 1.0	17 ± 1.0	2.2 ± 0.5
PIM 1-19 + PIM 1-19	40538/40538	(dB)	19 ± 1.0	19.5 ± 1.0	2 ± 0.5

¹ Return Loss: EN60728-4 Grade 2 10-47 MHz ≥ 18 dB

47-1000 MHz min. 18 dB ÷ 1.5/oct. and min. 14dB ² Screening Effectiveness:

Effectiveness: EN60728-2 Class A

5-300 MHz ≥ 85 dB, 300-470 MHz ≥ 80 dB 470-950 MHz ≥ 75 dB, 950-1000 MHz ≥ 65 dB

U
LL.
5
Ο
Ŭ

Connector		PG11 thread - optional 5/8" or cable shells
Power pass		Max 10 A
Hum modulation (64 V, 6 A)		< - 70 dB
Dimensions	(mm)	154 x 107 x 55
Weight	(kg)	0.8

accessories

Product information

DKT offers a wide range of connectors and adapters for the Power Splitter and ConFree series. These provide fast and easy installation without compromising the the very high quality, and this by ensuring a low insertion loss.

Data	Common to all PG11M adaptors (Where applicable)
Insertion loss (dB)	≤ 0 . 1
Return loss	≥ Grade 1 ¹
Screening efficiency	Class A ²
Material	Brass
Plating	Nickel-tin
Center conductor	Phosphor bronze or Beryllium copper
Center conductor plating	Nickle-tin

 1 Return loss: CENELEC EN60728-4 Grade 1 _ _ _ _ 5-47 MHz \geq 22 dB, 47-1006 MHz \geq 22 dB \div 1.5 dB/oct. min. 14 dB 2 Screening effectiveness:

CENELEC 50083-2 Class A 5-300 MHz ≥ 85 dB, 300-470 MHz ≥ 80 dB

 $470-950 \text{ MHz} \ge 85 \text{ dB}, 300-470 \text{ MHz} \ge 80 \text{ dB}$

PG11M-ACF-2 Item no.: 81903 Used to feed AC power, with cuttable pin for the right fit.

PG11M-5/8"F Item no.: 87049 Reduction ring, transforms PG11 socket into 5/8" socket.

